
Linux Capabilities and Namespaces

Capabilities

Michael Kerrisk, man7.org © 2024

January 2024

mtk@man7.org

Outline Rev: # c08bf53c67aa

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-8
3.3 Permitted and effective capabilities 3-14
3.4 Setting and viewing file capabilities 3-18
3.5 Capabilities-dumb and capabilities-aware applications 3-30
3.6 Text-form capabilities 3-35
3.7 Capabilities and execve() 3-39
3.8 The capability bounding set 3-42
3.9 Inheritable capabilities 3-46
3.10 Ambient capabilities 3-54
3.11 Capabilities and UID transitions 3-64
3.12 Summary remarks 3-69

Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-8
3.3 Permitted and effective capabilities 3-14
3.4 Setting and viewing file capabilities 3-18
3.5 Capabilities-dumb and capabilities-aware applications 3-30
3.6 Text-form capabilities 3-35
3.7 Capabilities and execve() 3-39
3.8 The capability bounding set 3-42
3.9 Inheritable capabilities 3-46
3.10 Ambient capabilities 3-54
3.11 Capabilities and UID transitions 3-64
3.12 Summary remarks 3-69

Rationale for capabilities

Traditional UNIX privilege model divides users into two
groups:

Normal users, subject to privilege checking based on UID
and GIDs

Effective UID 0 (superuser) bypasses many of those checks

Coarse granularity is a problem:
E.g., to give a process power to change system time, we
must also give it power to bypass file permission checks

⇒ No limit on possible damage if program is compromised

[TLPI §39.1]

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-4 §3.1

Rationale for capabilities

Capabilities divide power of superuser into small pieces

41 capabilities, as at Linux 6.7

Traditional superuser == process that has full set of
capabilities

Goal: replace set-UID-root programs with programs that
have capabilities

Compromise in set-UID-root binary ⇒ very dangerous

Compromise in binary with file capabilities ⇒ less dangerous

Capabilities are not specified by POSIX

A 1990s standardization effort was ultimately abandoned

Some other implementations have something similar

E.g., Solaris, FreeBSD

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-5 §3.1

A selection of Linux capabilities

Capability Permits process to
CAP_CHOWN Make arbitrary changes to file UIDs and GIDs
CAP_DAC_OVERRIDE Bypass file RWX permission checks
CAP_DAC_READ_SEARCH Bypass file R and directory X permission checks
CAP_IPC_LOCK Lock memory
CAP_FOWNER chmod(), utime(), set ACLs on arbitrary files
CAP_KILL Send signals to arbitrary processes
CAP_NET_ADMIN Various network-related operations
CAP_SETFCAP Set file capabilities
CAP_SETGID Make arbitrary changes to process’s (own) GIDs
CAP_SETPCAP Make changes to process’s (own) capabilities
CAP_SETUID Make arbitrary changes to process’s (own) UIDs
CAP_SYS_ADMIN Perform a wide range of system admin tasks
CAP_SYS_BOOT Reboot the system
CAP_SYS_NICE Change process priority and scheduling policy
CAP_SYS_MODULE Load and unload kernel modules
CAP_SYS_RESOURCE Raise process resource limits, override some limits
CAP_SYS_TIME Modify the system clock

More details: capabilities(7) manual page and TLPI §39.2

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-6 §3.1

Supporting capabilities

To support implementation of capabilities, the kernel must:
1 Check process capabilities for each privileged operation

Cf. traditional check: is process’s effective UID 0?

2 Provide system calls allowing a process to modify its
capabilities

So process can raise (add) and lower (remove) capabilities

(Capabilities analog of set*id() calls)

3 Support attaching capabilities to executable files

When file is executed, process gains attached capabilities

(Capabilities analog of set-UID-root program)

Implemented as follows:

Support for first two pieces available since Linux 2.2 (1999)

Support for file capabilities added in Linux 2.6.24 (2008)

(Delay due to design concerns rather than technical reasons)

[TLPI §39.4]

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-7 §3.1

Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-8
3.3 Permitted and effective capabilities 3-14
3.4 Setting and viewing file capabilities 3-18
3.5 Capabilities-dumb and capabilities-aware applications 3-30
3.6 Text-form capabilities 3-35
3.7 Capabilities and execve() 3-39
3.8 The capability bounding set 3-42
3.9 Inheritable capabilities 3-46
3.10 Ambient capabilities 3-54
3.11 Capabilities and UID transitions 3-64
3.12 Summary remarks 3-69

Process and file capabilities

Processes and (binary) files can each have capabilities

Process capabilities define power of process to do
privileged operations

Traditional superuser == process that has all capabilities

File capabilities are a mechanism to give a process
capabilities when it execs the file

Stored in security.capability extended attribute

(File metadata)

[TLPI §39.3]

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-10 §3.2

Process and file capability sets

Capability set: bit mask representing a group of capabilities

Each process† has 3‡ capability sets:

Permitted

Effective

Inheritable
†In truth, capabilities are a per-thread attribute

‡In truth, there are more capability sets

An executable file may have 3 associated capability sets:

Permitted

Effective

Inheritable

" Inheritable capabilities are little used; can mostly ignore

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-11 §3.2

Viewing process capabilities

/proc/PID/status fields (hexadecimal bit masks):
$ cat /proc/4091/status
...
CapInh: 0000000000000000
CapPrm: 0000000000200020
CapEff: 0000000000000000

See <sys/capability.h> for capability bit numbers
Here: CAP_KILL (bit 5), CAP_SYS_ADMIN (bit 21)

getpcaps(1) (part of libcap package):
$ getpcaps 4091
Capabilities for `4091': = cap_kill,cap_sys_admin+p

More readable notation, but a little tricky to interpret

Here, single ’=’ means inheritable + effective sets are empty

capsh(1) can be used to decode hex masks:
$ capsh --decode=200020
0x0000000000200020=cap_kill,cap_sys_admin

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-12 §3.2

Modifying process capabilities

A process can modify its capability sets by:
Raising a capability (adding it to set)

Synonyms: add, enable

Lowering a capability (removing it from set)

Synonyms: drop, clear, remove, disable

Mostly, we’ll defer discussion of the APIs until later

There are various rules about changes a process can make to
its capability sets

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-13 §3.2

Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-8
3.3 Permitted and effective capabilities 3-14
3.4 Setting and viewing file capabilities 3-18
3.5 Capabilities-dumb and capabilities-aware applications 3-30
3.6 Text-form capabilities 3-35
3.7 Capabilities and execve() 3-39
3.8 The capability bounding set 3-42
3.9 Inheritable capabilities 3-46
3.10 Ambient capabilities 3-54
3.11 Capabilities and UID transitions 3-64
3.12 Summary remarks 3-69

Process permitted and effective capabilities

Permitted : capabilities that process may employ

“Upper bound” on effective capability set

Once dropped from permitted set, a capability can’t be
reacquired

(But see discussion of execve() later)

Can’t drop while capability is also in effective set

Effective : capabilities that are currently in effect for process

I.e., capabilities that are examined when checking if a
process can perform a privileged operation

Capabilities can be dropped from effective set and
reacquired

Operate with least privilege....

Reacquisition possible only if capability is in permitted set

[TLPI §39.3.3]

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-16 §3.3

File permitted and effective capabilities

Permitted : a set of capabilities that may be added to
process’s permitted set during exec()

Effective : " a single bit that determines state of process’s
new effective set after exec() :

If set, all capabilities in process’s new permitted set are also
enabled in effective set

Useful for so-called capabilities-dumb applications

If not set, process’s new effective set is empty

File capabilities allow implementation of capabilities analog
of set-UID-root program

Notable difference: setting effective bit off allows a program
to start in unprivileged state

Set-UID/set-GID programs always start in privileged state

[TLPI §39.3.4]

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-17 §3.3

Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-8
3.3 Permitted and effective capabilities 3-14
3.4 Setting and viewing file capabilities 3-18
3.5 Capabilities-dumb and capabilities-aware applications 3-30
3.6 Text-form capabilities 3-35
3.7 Capabilities and execve() 3-39
3.8 The capability bounding set 3-42
3.9 Inheritable capabilities 3-46
3.10 Ambient capabilities 3-54
3.11 Capabilities and UID transitions 3-64
3.12 Summary remarks 3-69

Setting and viewing file capabilities from the shell

setcap(8) sets capabilities on files

Requires privilege (CAP_SETFCAP)

E.g., to set CAP_SYS_TIME as a permitted and effective
capability on an executable file:

$ cp /bin/date mydate
$ sudo setcap "cap_sys_time=pe" mydate

getcap(8) displays capabilities associated with a file

$ getcap mydate
mydate = cap_sys_time+ep

To list all files on the system that have capabilities, use:
sudo filecap -a

filecap is part of the libcap-ng-utils package

[TLPI §39.3.6]

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-20 §3.4

cap/demo_file_caps.c

int main(int argc, char *argv[]) {
cap_t caps = cap_get_proc(); /* Fetch process capabilities */
char *str = cap_to_text(caps, NULL);
printf("Capabilities: %s\n", str);
...
if (argc > 1) {

fd = open(argv[1], O_RDONLY);
if (fd >= 0)

printf("Successfully opened %s\n", argv[1]);
else

printf("Open failed: %s\n", strerror(errno));
}
exit(EXIT_SUCCESS);

}

Display process capabilities

Report result of opening file named in argv[1] (if present)

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-21 §3.4

cap/demo_file_caps.c

$ id -u
1000
$ cc -o demo_file_caps demo_file_caps.c -lcap
$./demo_file_caps /etc/shadow
Capabilities: =
Open failed: Permission denied
$ ls -l /etc/shadow
----------. 1 root root 1974 Mar 15 08:09 /etc/shadow

All steps in demos are done from unprivileged user ID 1000

Binary has no capabilities ⇒ process gains no capabilities

open() of /etc/shadow fails

Because /etc/shadow is readable only by privileged process

Process needs CAP_DAC_READ_SEARCH capability

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-22 §3.4

cap/demo_file_caps.c

$ sudo setcap cap_dac_read_search=p demo_file_caps
$./demo_file_caps /etc/shadow
Capabilities: = cap_dac_read_search+p
Open failed: Permission denied

Binary confers permitted capability to process, but capability
is not effective

Process gains capability in permitted set

open() of /etc/shadow fails

Because CAP_DAC_READ_SEARCH is not in effective set

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-23 §3.4

cap/demo_file_caps.c

$ sudo setcap cap_dac_read_search=pe demo_file_caps
$./demo_file_caps /etc/shadow
Capabilities: = cap_dac_read_search+ep
Successfully opened /etc/shadow

Binary confers permitted capability and has effective bit on

Process gains capability in permitted and effective sets

open() of /etc/shadow succeeds

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-24 §3.4

Notes for online practical sessions

Small groups in breakout rooms

Write a note into Slack if you have a preferred group

We will go faster, if groups collaborate on solving the
exercise(s)

You can share a screen in your room

I will circulate regularly between rooms to answer questions

Zoom has an “Ask for help” button...

Keep an eye on the #general Slack channel

Perhaps with further info about exercise;

Or a note that the exercise merges into a break

When your room has finished, write a message in the Slack
channel: “***** Room X has finished *****”

Then I have an idea of how many people have finished

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-25 §3.4

Shared screen etiquette

It may help your colleagues if you use a larger than normal font!
In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+“+” and Control+“-”

Or (e.g., emacs) hold down Control key and use mouse wheel

Long shell prompts make reading your shell session difficult
Use PS1='$ ' or PS1='# '

Low contrast color themes are difficult to read; change this if you can

Turn on line numbering in your editor
In vim use: :set number

In emacs use: M-x display-line-numbers-mode <RETURN>
M-x means Left-Alt+x

For collaborative editing, relative line-numbering is evil....
In vim use: :set nornu

In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

M-: means Left-Alt+Shift+:

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-26 §3.4

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

Enter the command tmate in an X-term, and you’ll see the following:

$ tmate
...
Connecting to ssh.tmate.io...
Note: clear your terminal before sharing readonly access
web session read only: ...
ssh session read only: ssh S0mErAnD0m5Tr1Ng@lon1.tmate.io
web session: ...
ssh session: ssh S0mEoTheRrAnD0m5Tr1Ng@lon1.tmate.io

Share last “ssh” string with colleague(s) via Slack or another channel

Or: "ssh session read only" string gives others read-only access

Your colleagues should paste that string into an X-term...

Now, you are sharing an X-term session in which anyone can type

Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ∼ .

To see above message again: tmate show-messages

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-27 §3.4

Exercises

1 Compile and run the cap/demo_file_caps program, without adding
any capabilities to the file, and verify that the process has no
capabilities when it executes the binary:

$ cc -o demo_file_caps demo_file_caps.c -lcap

The string “=” means, all capability sets empty.

2 Now make the binary set-UID-root :

$ sudo chown root demo_file_caps # Change owner to root
$ sudo chmod u+s demo_file_caps # Turn on set-UID bit
$ ls -l demo_file_caps # Verify
-rwsr-xr-x. 1 root mtk 8624 Oct 1 13:19 demo_file_caps

3 Run the binary and verify that the process gains all capabilities. (The
string “=ep” means “all capabilities in the permitted + effective sets”.)

If the process does not gain all capabilities, check whether your filesystem is
mounted with the nosuid option (findmnt -T <dir>). If it is, you could
either try to remount the filesystem without that option or just perform the
exercise on a filesystem that is not mounted with nosuid. (Typically, /tmp

should work.)

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-28 §3.4

Exercises

4 Take the existing set-UID-root binary, add a permitted capability to it,
and set the effective capability bit:

$ sudo setcap cap_dac_read_search=pe demo_file_caps

5 When you now run the binary, what capabilities does the process have?

6 Suppose you assign empty capability sets to the binary. When you
execute the binary, what capabilities does the process then have?

$ sudo setcap = demo_file_caps

7 Use the following command to remove capabilities from the binary and
verify that when executed, the binary once more grants all capabilities
to the process:

$ sudo setcap -r demo_file_caps

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-29 §3.4

Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-8
3.3 Permitted and effective capabilities 3-14
3.4 Setting and viewing file capabilities 3-18
3.5 Capabilities-dumb and capabilities-aware applications 3-30
3.6 Text-form capabilities 3-35
3.7 Capabilities and execve() 3-39
3.8 The capability bounding set 3-42
3.9 Inheritable capabilities 3-46
3.10 Ambient capabilities 3-54
3.11 Capabilities and UID transitions 3-64
3.12 Summary remarks 3-69

Capabilities-dumb and capabilities-aware applications

Capabilities-dumb application:
(Typically) an existing set-UID-root binary whose code we
can’t change

Thus, binary does not know to use capabilities APIs
(Binary simply uses traditional set*uid() APIs)

But want to make legacy binary less dangerous than
set-UID-root

Converse is capabilities-aware application

Program that was written/modified to use capabilities APIs

Set binary up with file effective capability bit off

Program “knows” it must use capabilities APIs to enable
effective capabilities

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-32 §3.5

Adding capabilities to a capabilities-dumb application

To convert existing set-UID-root binary to use file capabilities:

Setup:

Binary remains set-UID-root

Enable a subset of file permitted capabilities + set effective
bit on

(Note: code of binary isn’t changed)

Operation:
When binary is executed, process gets (just the) specified
subset of capabilities in its permitted and effective sets

IOW: file-capabilities override effect of set-UID-root bit,
which would normally confer all capabilities to process

Process UID changes between zero and nonzero
automatically raise/lower process’s capabilities

(Covered in more detail later)

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-33 §3.5

How do I work out what capabilities a program needs?

Some possibilities to discover what capabilities are needed by an
arbitrary program:

System call manual pages (section 2) are a good start

Look for capability requirements documented in
DESCRIPTION or ERRORS

Run the program (without capabilities) under strace(1) :
System call failures due to lack of capabilities normally
return EPERM in errno

" But not all EPERM errors are due to lack of capabilities

If program displays an error message that seems to relate to
capabilities, look in trace output for nearby EPERM errors

You may want to use the –v option so that strace doesn’t
abbreviate strings

In extreme cases, you may need to read kernel source

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-34 §3.5

Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-8
3.3 Permitted and effective capabilities 3-14
3.4 Setting and viewing file capabilities 3-18
3.5 Capabilities-dumb and capabilities-aware applications 3-30
3.6 Text-form capabilities 3-35
3.7 Capabilities and execve() 3-39
3.8 The capability bounding set 3-42
3.9 Inheritable capabilities 3-46
3.10 Ambient capabilities 3-54
3.11 Capabilities and UID transitions 3-64
3.12 Summary remarks 3-69

Textual representation of capabilities

Both setcap(8) and getcap(8) work with textual
representations of capabilities

Syntax described in cap_from_text(3) manual page

String read left to right, containing space-separated clauses

(The capability sets are initially considered to be empty)

Clause: caps-list operator flags [operator flags] ...

caps-list is comma-separated list of capability names, or all

operator is =, +, or -

flags is zero or more of p (permitted), e (effective), or
i (inheritable)

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-36 §3.6

Textual representation of capabilities

Operators:
= operator:

Raise capabilities in sets specified by flags ;
lower those capabilities in remaining sets

caps-list can be omitted; defaults to all

flags can be omitted ⇒ clear capabilities from all sets
⇒ Thus : "=" means clear all capabilities in all sets

+ operator: raise capabilities in sets specified by flags

- operator: lower capabilities in sets specified by flags

Clause can contain multiple [operator flags] parts:

E.g., cap_sys_time+p-i

What does "=p cap_kill,cap_sys_admin+e" mean?

All capabilities in permitted set, plus CAP_KILL and
CAP_SYS_ADMIN in effective set

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-37 §3.6

Exercises

1 What capability bits are enabled by each of the following text-form capability
specifications?

"=p"

"="

"cap_setuid=p cap_sys_time+pie"

"=p cap_kill-p"

"cap_kill=p = cap_sys_admin+pe"

"cap_chown=i cap_kill=pe cap_setfcap,cap_chown=p"

2 The program cap/cap_text.c takes a single command-line argument,
which is a text-form capability string. It converts that string to an
in-memory representation and then iterates through the set of all capabilities,
printing out the state of each capability within the permitted, effective, and
inheritable sets. It thus provides a method of verifying your interpretation of
text-form capability strings. Try supplying each of the above strings as an
argument to the program (remember to enclose the entire string in
quotes!) and check the results against your answers to the previous exercise.

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-38 §3.6

Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-8
3.3 Permitted and effective capabilities 3-14
3.4 Setting and viewing file capabilities 3-18
3.5 Capabilities-dumb and capabilities-aware applications 3-30
3.6 Text-form capabilities 3-35
3.7 Capabilities and execve() 3-39
3.8 The capability bounding set 3-42
3.9 Inheritable capabilities 3-46
3.10 Ambient capabilities 3-54
3.11 Capabilities and UID transitions 3-64
3.12 Summary remarks 3-69

Transformation of process capabilities during exec

During execve(), process’s capabilities are transformed:

P′(perm) = F(perm) & P(bset)

P′(eff) = F(eff) ? P′(perm) : 0

P() / P’() : process capability set before/after exec

F() : file capability set (of file that is being execed)

New permitted set for process comes from file permitted set
ANDed with capability bounding set (bset)

" Note that P(perm) has no effect on P’(perm)

New effective set is either 0 or same as new permitted set

" Transformation rules above are a simplification that
ignores process+file inheritable sets and process ambient set

In most cases, those sets are empty (i.e., 0)

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-40 §3.7

Transformation of process capabilities during exec

Commonly, process bounding set contains all capabilities

Therefore transformation rule for process permitted set:

P′(perm) = F(perm) & P(bset)

commonly simplifies to:

P′(perm) = F(perm)

[TLPI §39.5]

Linux Capabilities and Namespaces ©2024 M. Kerrisk Capabilities 3-41 §3.7

