NAME | SYNOPSIS | DESCRIPTION | OPTIONS | EXIT STATUS | EXAMPLES | SEE ALSO | NOTES | COLOPHON |
|
|
SYSTEMD-RUN(1) systemd-run SYSTEMD-RUN(1)
systemd-run - Run programs in transient scope units, service units, or path-, socket-, or timer-triggered service units
systemd-run [OPTIONS...] COMMAND [ARGS...] systemd-run [OPTIONS...] [PATH OPTIONS...] {COMMAND} [ARGS...] systemd-run [OPTIONS...] [SOCKET OPTIONS...] {COMMAND} [ARGS...] systemd-run [OPTIONS...] [TIMER OPTIONS...] {COMMAND} [ARGS...]
systemd-run may be used to create and start a transient .service or .scope unit and run the specified COMMAND in it. It may also be used to create and start a transient .path, .socket, or .timer unit, that activates a .service unit when elapsing. If a command is run as transient service unit, it will be started and managed by the service manager like any other service, and thus shows up in the output of systemctl list-units like any other unit. It will run in a clean and detached execution environment, with the service manager as its parent process. In this mode, systemd-run will start the service asynchronously in the background and return after the command has begun execution (unless --no-block, --wait, --pipe, or --pty are specified, see below). If a command is run as transient scope unit, it will be executed by systemd-run itself as parent process and will thus inherit the execution environment of the caller. However, the processes of the command are managed by the service manager similarly to normal services, and will show up in the output of systemctl list-units. Execution in this case is synchronous, and will return only when the command finishes. This mode is enabled via the --scope switch (see below). If a command is run with path, socket, or timer options such as --on-calendar= (see below), a transient path, socket, or timer unit is created alongside the service unit for the specified command. Only the transient path, socket, or timer unit is started immediately, the transient service unit will be triggered by the path, socket, or timer unit. If the --unit= option is specified, the COMMAND may be omitted. In this case, systemd-run creates only a .path, .socket, or .timer unit that triggers the specified unit. By default, services created with systemd-run default to the simple type, see the description of Type= in systemd.service(5) for details. Note that when this type is used, the service manager (and thus the systemd-run command) considers service start-up successful as soon as the fork() for the main service process succeeded, i.e. before the execve() is invoked, and thus even if the specified command cannot be started. Consider using the exec service type (i.e. --property=Type=exec) to ensure that systemd-run returns successfully only if the specified command line has been successfully started. After systemd-run passes the command to the service manager, the manager performs variable expansion. This means that dollar characters ("$") which should not be expanded need to be escaped as "$$". Expansion can also be disabled using --expand-environment=no.
The following options are understood:
--no-ask-password
Do not query the user for authentication for privileged
operations.
Added in version 226.
--scope
Create a transient .scope unit instead of the default
transient .service unit (see above).
Added in version 206.
--unit=, -u
Use this unit name instead of an automatically generated one.
Added in version 206.
--property=, -p
Sets a property on the scope or service unit that is created.
This option takes an assignment in the same format as
systemctl(1)'s set-property command.
Added in version 211.
--description=
Provide a description for the service, scope, path, socket,
or timer unit. If not specified, the command itself will be
used as a description. See Description= in systemd.unit(5).
Added in version 206.
--slice=
Make the new .service or .scope unit part of the specified
slice, instead of system.slice (when running in --system
mode) or the root slice (when running in --user mode).
Added in version 206.
--slice-inherit
Make the new .service or .scope unit part of the slice the
systemd-run itself has been invoked in. This option may be
combined with --slice=, in which case the slice specified via
--slice= is placed within the slice the systemd-run command
is invoked in.
Example: consider systemd-run being invoked in the slice
foo.slice, and the --slice= argument is bar. The unit will
then be placed under foo-bar.slice.
Added in version 246.
--expand-environment=BOOL
Expand environment variables in command arguments. If
enabled, environment variables specified as "${VARIABLE}"
will be expanded in the same way as in commands specified via
ExecStart= in units. With --scope, this expansion is
performed by systemd-run itself, and in other cases by the
service manager that spawns the command. Note that this is
similar to, but not the same as variable expansion in bash(1)
and other shells.
The default is to enable this option in all cases, except for
--scope where it is disabled by default, for backward
compatibility reasons. Note that this will be changed in a
future release, where it will be switched to enabled by
default as well.
See systemd.service(5) for a description of variable
expansion. Disabling variable expansion is useful if the
specified command includes or may include a "$" sign.
Added in version 254.
-r, --remain-after-exit
After the service process has terminated, keep the service
around until it is explicitly stopped. This is useful to
collect runtime information about the service after it
finished running. Also see RemainAfterExit= in
systemd.service(5).
Added in version 207.
--send-sighup
When terminating the scope or service unit, send a SIGHUP
immediately after SIGTERM. This is useful to indicate to
shells and shell-like processes that the connection has been
severed. Also see SendSIGHUP= in systemd.kill(5).
Added in version 207.
--service-type=
Sets the service type. Also see Type= in systemd.service(5).
This option has no effect in conjunction with --scope.
Defaults to simple.
Added in version 211.
--uid=, --gid=
Runs the service process under the specified UNIX user and
group. Also see User= and Group= in systemd.exec(5).
Added in version 211.
--nice=
Runs the service process with the specified nice level. Also
see Nice= in systemd.exec(5).
Added in version 211.
--working-directory=
Runs the service process with the specified working
directory. Also see WorkingDirectory= in systemd.exec(5).
Added in version 240.
--same-dir, -d
Similar to --working-directory=, but uses the current working
directory of the caller for the service to execute.
Added in version 240.
-E NAME[=VALUE], --setenv=NAME[=VALUE]
Runs the service process with the specified environment
variable set. This parameter may be used more than once to
set multiple variables. When "=" and VALUE are omitted, the
value of the variable with the same name in the program
environment will be used.
Also see Environment= in systemd.exec(5).
Added in version 211.
--pty, -t
When invoking the command, the transient service connects its
standard input, output and error to the terminal systemd-run
is invoked on, via a pseudo TTY device. This allows running
programs that expect interactive user input/output as
services, such as interactive command shells.
This option will result in systemd-run synchronously waiting
for the transient service to terminate, similar to specifying
--wait. If specified along with --wait, systemd-run won't
exit when manually disconnecting from the pseudo TTY device.
Note that machinectl(1)'s shell command is usually a better
alternative for requesting a new, interactive login session
on the local host or a local container.
See below for details on how this switch combines with
--pipe.
Added in version 219.
--pipe, -P
If specified, standard input, output, and error of the
transient service are inherited from the systemd-run command
itself. This allows systemd-run to be used within shell
pipelines.
Note that this mode is not suitable for interactive command
shells and similar, as the service process will not become a
TTY controller when invoked on a terminal. Use --pty instead
in that case.
When both --pipe and --pty are used in combination the more
appropriate option is automatically determined and used.
Specifically, when invoked with standard input, output and
error connected to a TTY --pty is used, and otherwise --pipe.
This option will result in systemd-run synchronously waiting
for the transient service to terminate, similar to specifying
--wait.
When this option is used the original file descriptors
systemd-run receives are passed to the service processes
as-is. If the service runs with different privileges than
systemd-run, this means the service might not be able to
reopen the passed file descriptors, due to normal file
descriptor access restrictions. If the invoked process is a
shell script that uses the echo "hello" >/dev/stderr
construct for writing messages to stderr, this might cause
problems, as this only works if stderr can be reopened. To
mitigate this use the construct echo "hello" >&2 instead,
which is mostly equivalent and avoids this pitfall.
Added in version 235.
--shell, -S
A shortcut for "--pty --same-dir --wait --collect
--service-type=exec $SHELL", i.e. requests an interactive
shell in the current working directory, running in service
context, accessible with a single switch.
Added in version 240.
--quiet, -q
Suppresses additional informational output while running.
This is particularly useful in combination with --pty when it
will suppress the initial message explaining how to terminate
the TTY connection.
Added in version 219.
--on-active=, --on-boot=, --on-startup=, --on-unit-active=,
--on-unit-inactive=
Defines a monotonic timer relative to different starting
points for starting the specified command. See OnActiveSec=,
OnBootSec=, OnStartupSec=, OnUnitActiveSec= and
OnUnitInactiveSec= in systemd.timer(5) for details. These
options are shortcuts for --timer-property= with the relevant
properties. These options may not be combined with --scope or
--pty.
Added in version 218.
--on-calendar=
Defines a calendar timer for starting the specified command.
See OnCalendar= in systemd.timer(5). This option is a
shortcut for --timer-property=OnCalendar=. This option may
not be combined with --scope or --pty.
Added in version 218.
--on-clock-change, --on-timezone-change
Defines a trigger based on system clock jumps or timezone
changes for starting the specified command. See
OnClockChange= and OnTimezoneChange= in systemd.timer(5).
These options are shortcuts for
--timer-property=OnClockChange=yes and
--timer-property=OnTimezoneChange=yes. These options may not
be combined with --scope or --pty.
Added in version 242.
--path-property=, --socket-property=, --timer-property=
Sets a property on the path, socket, or timer unit that is
created. This option is similar to --property=, but applies
to the transient path, socket, or timer unit rather than the
transient service unit created. This option takes an
assignment in the same format as systemctl(1)'s set-property
command. These options may not be combined with --scope or
--pty.
Added in version 218.
--no-block
Do not synchronously wait for the unit start operation to
finish. If this option is not specified, the start request
for the transient unit will be verified, enqueued and
systemd-run will wait until the unit's start-up is completed.
By passing this argument, it is only verified and enqueued.
This option may not be combined with --wait.
Added in version 220.
--wait
Synchronously wait for the transient service to terminate. If
this option is specified, the start request for the transient
unit is verified, enqueued, and waited for. Subsequently the
invoked unit is monitored, and it is waited until it is
deactivated again (most likely because the specified command
completed). On exit, terse information about the unit's
runtime is shown, including total runtime (as well as CPU
usage, if --property=CPUAccounting=1 was set) and the exit
code and status of the main process. This output may be
suppressed with --quiet. This option may not be combined with
--no-block, --scope or the various path, socket, or timer
options.
Added in version 232.
-G, --collect
Unload the transient unit after it completed, even if it
failed. Normally, without this option, all units that ran and
failed are kept in memory until the user explicitly resets
their failure state with systemctl reset-failed or an
equivalent command. On the other hand, units that ran
successfully are unloaded immediately. If this option is
turned on the "garbage collection" of units is more
aggressive, and unloads units regardless if they exited
successfully or failed. This option is a shortcut for
--property=CollectMode=inactive-or-failed, see the
explanation for CollectMode= in systemd.unit(5) for further
information.
Added in version 236.
--ignore-failure
By default, if the specified command fails the invoked unit
will be marked failed (though possibly still unloaded, see
--collect=, above), and this is reported in the logs. If this
switch is specified this is suppressed and any non-success
exit status/code of the command is treated as success.
Added in version 256.
--background=COLOR
Change the terminal background color to the specified ANSI
color as long as the session lasts. The color specified
should be an ANSI X3.64 SGR background color, i.e. strings
such as "40", "41", ..., "47", "48;2;...", "48;5;...". See
ANSI Escape Code (Wikipedia)[1] for details.
Added in version 256.
--user
Talk to the service manager of the calling user, rather than
the service manager of the system.
--system
Talk to the service manager of the system. This is the
implied default.
-H, --host=
Execute the operation remotely. Specify a hostname, or a
username and hostname separated by "@", to connect to. The
hostname may optionally be suffixed by a port ssh is
listening on, separated by ":", and then a container name,
separated by "/", which connects directly to a specific
container on the specified host. This will use SSH to talk to
the remote machine manager instance. Container names may be
enumerated with machinectl -H HOST. Put IPv6 addresses in
brackets.
-M, --machine=
Execute operation on a local container. Specify a container
name to connect to, optionally prefixed by a user name to
connect as and a separating "@" character. If the special
string ".host" is used in place of the container name, a
connection to the local system is made (which is useful to
connect to a specific user's user bus: "--user
[email protected]"). If the "@" syntax is not used, the
connection is made as root user. If the "@" syntax is used
either the left hand side or the right hand side may be
omitted (but not both) in which case the local user name and
".host" are implied.
-C, --capsule=
Execute operation on a capsule. Specify a capsule name to
connect to. See [email protected](5) for details about
capsules.
Added in version 256.
-h, --help
Print a short help text and exit.
--version
Print a short version string and exit.
All command line arguments after the first non-option argument
become part of the command line of the launched process.
On success, 0 is returned. If systemd-run failed to start the service, a non-zero return value will be returned. If systemd-run waits for the service to terminate, the return value will be propagated from the service. 0 will be returned on success, including all the cases where systemd considers a service to have exited cleanly, see the discussion of SuccessExitStatus= in systemd.service(5).
Example 1. Logging environment variables provided by systemd to services # systemd-run env Running as unit: run-19945.service # journalctl -u run-19945.service Sep 08 07:37:21 bupkis systemd[1]: Starting /usr/bin/env... Sep 08 07:37:21 bupkis systemd[1]: Started /usr/bin/env. Sep 08 07:37:21 bupkis env[19948]: PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin Sep 08 07:37:21 bupkis env[19948]: LANG=en_US.UTF-8 Sep 08 07:37:21 bupkis env[19948]: BOOT_IMAGE=/vmlinuz-3.11.0-0.rc5.git6.2.fc20.x86_64 Example 2. Limiting resources available to a command # systemd-run -p IOWeight=10 updatedb This command invokes the updatedb(8) tool, but lowers the block I/O weight for it to 10. See systemd.resource-control(5) for more information on the IOWeight= property. Example 3. Running commands at a specified time The following command will touch a file after 30 seconds. # date; systemd-run --on-active=30 --timer-property=AccuracySec=100ms /bin/touch /tmp/foo Mon Dec 8 20:44:24 KST 2014 Running as unit: run-71.timer Will run service as unit: run-71.service # journalctl -b -u run-71.timer -- Journal begins at Fri 2014-12-05 19:09:21 KST, ends at Mon 2014-12-08 20:44:54 KST. -- Dec 08 20:44:38 container systemd[1]: Starting /bin/touch /tmp/foo. Dec 08 20:44:38 container systemd[1]: Started /bin/touch /tmp/foo. # journalctl -b -u run-71.service -- Journal begins at Fri 2014-12-05 19:09:21 KST, ends at Mon 2014-12-08 20:44:54 KST. -- Dec 08 20:44:48 container systemd[1]: Starting /bin/touch /tmp/foo... Dec 08 20:44:48 container systemd[1]: Started /bin/touch /tmp/foo. Example 4. Allowing access to the tty The following command invokes bash(1) as a service passing its standard input, output and error to the calling TTY. # systemd-run -t --send-sighup bash Example 5. Start screen as a user service $ systemd-run --scope --user screen Running scope as unit run-r14b0047ab6df45bfb45e7786cc839e76.scope. $ screen -ls There is a screen on: 492..laptop (Detached) 1 Socket in /var/run/screen/S-fatima. This starts the screen process as a child of the systemd --user process that was started by [email protected], in a scope unit. A systemd.scope(5) unit is used instead of a systemd.service(5) unit, because screen will exit when detaching from the terminal, and a service unit would be terminated. Running screen as a user unit has the advantage that it is not part of the session scope. If KillUserProcesses=yes is configured in logind.conf(5), the default, the session scope will be terminated when the user logs out of that session. The [email protected] is started automatically when the user first logs in, and stays around as long as at least one login session is open. After the user logs out of the last session, [email protected] and all services underneath it are terminated. This behavior is the default, when "lingering" is not enabled for that user. Enabling lingering means that [email protected] is started automatically during boot, even if the user is not logged in, and that the service is not terminated when the user logs out. Enabling lingering allows the user to run processes without being logged in, for example to allow screen to persist after the user logs out, even if the session scope is terminated. In the default configuration, users can enable lingering for themselves: $ loginctl enable-linger Example 6. Variable expansion by the manager $ systemd-run -t echo "<${INVOCATION_ID}>" '<${INVOCATION_ID}>' <> <5d0149bfa2c34b79bccb13074001eb20> The first argument is expanded by the shell (double quotes), but the second one is not expanded by the shell (single quotes). echo(1) is called with ["/usr/bin/echo", "<>", "<${INVOCATION_ID}>"] as the argument array, and then systemd(1) generates ${INVOCATION_ID} and substitutes it in the command-line. This substitution could not be done on the client side, because the target ID that will be set for the service isn't known before the call is made. Example 7. Variable expansion and output redirection using a shell Variable expansion by systemd(1) can be disabled with --expand-environment=no. Disabling variable expansion can be useful if the command to execute contains dollar characters and escaping them would be inconvenient. For example, when a shell is used: $ systemd-run --expand-environment=no -t bash \ -c 'echo $SHELL $$ >/dev/stdout' /bin/bash 12345 The last argument is passed verbatim to the bash(1) shell which is started by the service unit. The shell expands "$SHELL" to the path of the shell, and "$$" to its process number, and then those strings are passed to the echo built-in and printed to standard output (which in this case is connected to the calling terminal). Example 8. Return value $ systemd-run --user --wait true $ systemd-run --user --wait -p SuccessExitStatus=11 bash -c 'exit 11' $ systemd-run --user --wait -p SuccessExitStatus=SIGUSR1 --expand-environment=no \ bash -c 'kill -SIGUSR1 $$' Those three invocations will succeed, i.e. terminate with an exit code of 0.
systemd(1), systemctl(1), systemd.unit(5), systemd.service(5), systemd.scope(5), systemd.slice(5), systemd.exec(5), systemd.resource-control(5), systemd.timer(5), systemd-mount(1), machinectl(1), run0(1)
1. ANSI Escape Code (Wikipedia) https://en.wikipedia.org/wiki/ANSI_escape_code#SGR_(Select_Graphic_Rendition)_parameters
This page is part of the systemd (systemd system and service
manager) project. Information about the project can be found at
⟨http://www.freedesktop.org/wiki/Software/systemd⟩. If you have
a bug report for this manual page, see
⟨http://www.freedesktop.org/wiki/Software/systemd/#bugreports⟩.
This page was obtained from the project's upstream Git repository
⟨https://github.com/systemd/systemd.git⟩ on 2024-06-14. (At that
time, the date of the most recent commit that was found in the
repository was 2024-06-13.) If you discover any rendering
problems in this HTML version of the page, or you believe there
is a better or more up-to-date source for the page, or you have
corrections or improvements to the information in this COLOPHON
(which is not part of the original manual page), send a mail to
[email protected]
systemd 257~devel SYSTEMD-RUN(1)
Pages that refer to this page: machinectl(1), run0(1), systemd-mount(1), systemd-socket-activate(1), [email protected](5), logind.conf(5), systemd.exec(5), systemd.scope(5), systemd.service(5), systemd.directives(7), systemd.index(7)